Magnetoelectricity of Lu$_2$Fe$_{16.5}$Ru$_{0.5}$

E.A. Tereshina-Chitrova1,2*, A. V. Andreev2, O. Isnard3, K. Koyama4, K. Watanabe5

1Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, 12116 Prague, Czech Republic
2Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
3Institut Néel, CNRS/University J. Fourier, 6 Rue Jules Horovitz, Grenoble 38042, France
4Graduate School of Science and Engineering, Kagoshima University, Kagoshima 980-0865, Japan
5HFLSM, Institute for Materials Research, Tohoku University, Sendai, Japan

Keywords: rare-earth intermetallics, high pressure, neutron diffraction, magnetostriction

*e-mail: teresh@fzu.cz

$_\text{R}_2$Fe$_17$ (R is a rare earth) are compounds with very strong magnetoelectric coupling and often exhibit Invar-like properties such as anomalous and anisotropic spontaneous magnetostriction and negative thermal expansion in a wide temperature range [1]. For Lu$_2$Fe$_{17}$, with the smallest non-magnetic R, the competition of positive and negative exchange interactions between the Fe atoms at various crystallographic positions [2] of the hexagonal (Th$_2$Ni$_{17}$ type) crystal structure results in the transformation of the low-temperature ferromagnetic (F) phase to the antiferromagnetic phase at the Curie temperature $T_C = 274$ K. The application of external pressure and hydrogenation act in the opposite way. While pressure suppresses ferromagnetism in Lu$_2$Fe$_{17}$, hydrogenation (can be considered as a positive pressure) completely removes the AF phase, and the compound Lu$_2$Fe$_{17}$H becomes ferromagnetic [3]. Small substitution of Ru for Fe in Lu$_2$Fe$_{17}$ leads to stabilization of the AF state down to the lowest temperatures. The Néel temperature of Lu$_2$Fe$_{16.5}$Ru$_{0.5}$ is 208 K (Fig. 1) [4].

Neutron diffraction data were collected on the diffractometer D1B ($\lambda = 2.529$ Å). The data analysis done using the FULLPROF program showed that Lu$_2$Fe$_{16.5}$Ru$_{0.5}$ has a helimagnetic antiferromagnetic structure. The propagation vector of the helix varies from 0.236* directly below T_N down to 0.219* at 2 K [4]. External pressure pushes the Néel transition towards the lower temperature. The T_N is ≈ 190 K under the pressure of 0.5 GPa (Fig 1).

Magnetostriiction of Lu$_2$Fe$_{16.5}$Ru$_{0.5}$ was measured by two independent methods. As the highly sensitive and accurate method, the capacitor dilatometer was employed for the measurement of the single-crystalline sample. The X-ray dilatometry, on the other hand has a much lower sensitivity and accuracy but is a direct method of determination of the interatomic distances changes. Furthermore, possible field-induced structure changes can be observed by means of X-ray diffraction. The atomic coordinates deduced from the powder neutron diffraction experiment were used for the refinement of the obtained X-ray diffraction patterns.

The magnetostrictive strains along the a- and c-axis and the volume effect at 5 T in Lu$_2$Fe$_{16.5}$Ru$_{0.5}$ are $\lambda_a = 0.5*10^{-3}$, $\lambda_c = 1.0*10^{-3}$, $\omega = 2.1*10^{-3}$, respectively. The lattice a parameter remains nearly unchanged as the temperature decreases while the c parameter increases noticeably. The spontaneous volume magnetostriiction reaches the value of $\alpha_v = 6*10^{-5}$. The applied pressure compensates for the unit cell expansion at low temperatures and the AF interactions remain strong in Lu$_2$Fe$_{16.5}$Ru$_{0.5}$.

Acknowledgments: E.A.C.T. gratefully acknowledges the support of Japan Society for the Promotion of Science. The work was supported by the grant 19-00925S of the Czech Science Foundation. Part of the work was supported by the project “Nanomaterials centre for advanced applications”, project no. CZ.02.1.01/0.0/0.0/15_003/0000485, financed by ERDF.