Magnetoelasticity of Lu₂Fe_{16.5}Ru_{0.5}

E.A. Tereshina-Chitrova^{1,2}*, A.V. Andreev², O. Isnard³, K. Koyama⁴, K. Watanabe⁵

¹Faculty of Mathermatics and Physics, Charles University in Prague, Ke Karlovu 5, 12116 Prague, Czech Republic

²Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic

³Institut Néel, CNRS/University J. Fourier, 6 Rue Jules Horowitz, Grenoble 38042, France

⁴Graduate School of Science and Engineering, Kagoshima University, Kagoshima 980-0065, Japan

⁵HFLSM, Institute for Materials Research, Tohoku University, Sendai, Japan

Keywords: rare-earth intermetallics, high pressure, neutron diffraction, magnetostriction

*e-mail: teresh@fzu.cz

 R_2 Fe₁₇ (R is a rare earth) are compounds with very strong magneto-volume coupling and often exhibit Invarlike properties such as anomalous and anisotropic spontaneous magnetostriction and negative thermal expansion in a wide temperature range [1]. For Lu₂Fe₁₇ with the smallest non-magnetic R, the competition of positive and negative exchange interactions between the Fe atoms at various crystallographic positions [2] of the hexagonal (Th₂Ni₁₇ type) crystal structure results in the transformation of the low-temperature ferromagnetic (F) phase to the antiferromagnetic phase at the Curie temperature $T_{\rm C}=130$ K (Fig. 1). The non-collinear antiferromagnetism extends to the Néel temperature of T_N = 274 K. The application of external pressure and hydrogen charging act in the opposite way. While pressure suppresses ferromagnetism in Lu₂Fe₁₇, hydrogenation (can be considered as a positive pressure) completely removes the AF phase, and the compound Lu₂Fe₁₇H becomes ferromagnetic [3]. Small substitution of Ru for Fe in Lu₂Fe₁₇ leads to stabilization of the AF state down to the lowest temperatures. The Néel temperature of $Lu_2Fe_{16.5}Ru_{0.5}$ is 208 K (Fig. 1) [4].

Fig. 1. Temperature dependence of magnetization M(T) of Lu₂Fe_{16.5}Ru_{0.5} measured in the field 0.02 T under 0 and 0.5 GPa pressures. The M(T) of the parent Lu₂Fe₁₇ under ambient pressure is shown for comparison.

The interplay of Ru substitution for Fe and hydrostatic pressure and their combined effects on the magnetoelasticity of Lu₂Fe_{16.5}Ru_{0.5} were studied by means of powder neutron diffraction under hydrostatic pressure of up to 0.5 GPa and by magnetostriction measurements.

Neutron diffraction data were collected on the diffractometer D1B (λ = 2.529 Å). The data analysis done using the FULLPROF program showed that Lu₂Fe_{16.5}Ru_{0.5} has a helimagnetic antiferromagnetic structure. The propagation vector of the helix varies from 0.236 c^* directly below $T_{\rm N}$ down to 0.219 c^* at 2 K [4]. External pressure pushes the Néel transition towards the lower temperature. The $T_{\rm N}$ is ~190 K under the pressure of 0.5 GPa (Fig 1).

Magnetostriction of Lu₂Fe_{16.5}Ru_{0.5} was measured by two independent methods. As the highly sensitive and accurate method, the capacitor dilatometer was employed for the measurement of the single-crystalline sample. The X-ray dilatometry, on the other hand has a much lower sensitivity and accuracy but is a direct method of determination of the interatomic distances changes. Furthermore, possible field-induced structure changes can be observed by means of X-ray diffraction. The atomic coordinates deduced from the powder neutron diffraction experiment were used for the refinement of the obtained X-ray diffraction patterns.

The magnetostrictive strains along the a- and c-axis and the volume effect at 5 T in Lu₂Fe_{16.5}Ru_{0.5} are λ_a = 0.5*10⁻³, λ_c = 1.0*10⁻³, ω = 2.1*10⁻³, respectively. The lattice a parameter remains nearly unchanged as the temperature decreases while the c parameter increases noticeably. The spontaneous volume magnetostrcition reaches the value of $\omega_s \sim 6*10^{-3}$. The applied pressure compensates for the unit cell expansion at low temperatures and the AF interactions remain strong in Lu₂Fe_{16.5}Ru_{0.5}.

Acknowledgments: E.A.C.T. gratefully acknowledges the support of Japan Society for the Promotion of Science. The work was supported by the grant 19-00925S of the Czech Science Foundation. Part of the work was supported by the project "Nanomaterials centre for advanced applications", project no. CZ.02.1.01/0.0/0.0/15_003/0000485, financed by ERDF.

- Andreev A. V., in *Handbook of Magnetic Materials*, Vol. 8, Ed. by K.H.J. Buschow, Elsevier Science B.V., 1995, p.141.
- [2] D. Givord and R. Lemaire, *IEEE Trans. Magn.*, 1974 MAG-10, 109.
- [3] E. A. Tereshina et al., J. Phys. Soc. Japan 2007, 76, 82.
- [4] E.A. Tereshina et al., *Phys. Rev. B* 2014, **89**, 094420.