The effect of pressure on ferromagnetic properties of the van-der-Waals materials VI$_3$ and CrI$_3$

M. Kratochvílová1, J. Valenta1, S. Son2,3, P. Proschek1, M. Míšek4, J. Prchal1, V. Sechovsky*1, and J-G. Park2,3

1Charles University, Department of Condensed Matter Physics, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
2Center for Correlated Electron Systems, Institute for Basic Science, Seoul 08826, Korea
3Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
4Institute of Physics, Academy of Sciences of Czech Republic, v.v.i, Na Slovance 2, 182 21 Prague 8, Czech Republic

Keywords: van-der-Waals ferromagnet, high pressure, dimensionality.

*e-mail: sech@mag.mff.cuni.cz

Two-dimensional van-der-Waals (vdW) magnetic materials have in recent years become the subject of an intense research [1]. In these materials, hydrostatic pressure represents a powerful tuning parameter. The dominant effect of hydrostatic pressure on weakly bonded planes is consists of pressing them together which may gradually convert the system from two- to three-dimensional.

Despite belonging to a well-studied family of transitionmetal trihalides, the VI$_3$ and CrI$_3$ iodides have received a significant attention just recently [2, 3, 4, 5, 6]. VI$_3$ crystallizes in the trigonal P31c structure which reorders into a monoclinic C2/c structure below T_C = 80 K [2]. The material is a hard ferromagnet below T_C = 50 K with high anisotropy. Optical and electrical transport measurements reveal insulating properties and the previous theoretical predictions suggest VI$_3$ to be a correlated Mott insulator. The Curie temperature T_C has been reported intact by hydrostatic pressure up to ~ 0.7 GPa. The observed rapid increase of T_C at higher pressures up to 1 GPa has been attributed to the commencing departure of dimensionality away from two [2].

CrI$_3$, on the other hand, is a semiconductor which exhibits at T_C = 61 K a transition to an anisotropic 3D-Ising ferromagnetic state with the easy magnetization axis perpendicular to the layers [7]. The compound exhibits a large van der Waals gap which leads to a 3D magnetic characteristics. T_C increasing upon increasing pressure up to 1 GPa has been reported [8].

We present results comprehensive measurements of the magnetic properties of VI$_3$ and CrI$_3$ single crystals in hydrostatic pressures far exceeding the values reported sofar.

The single crystals were prepared by chemical vapor transport method as described elsewhere [3]. The reference ambient-pressure magnetization data with respect temperature and magnetic field was measured using PPMS systems (Quantum Design), and Closed Cycle Cryocooler (Janis Research), respectively. A double-layered CuBe/NiCrAl piston-cylinder pressure cell was used to generate pressures up to ~3 GPa, with a Daphne 7373 pressure medium and a manganin manometer. Further extension of pressure-effect measurements up to 10 GPa using a DAC cell is in progress.

The temperature dependence of the real part of ac susceptibility χ_{Re} in VI$_3$ reveals clearly the ferromagnetic transition at ~ 50 K. Except of that, three additional, less pronounced peaks above T_C are observed in the temperature range of ~ 52 K-60 K. The anomalies seem to be almost unaffected by increasing pressure up to ~ 0.8 GPa. Above this pressure value, we observed the peaks merging into one and simultaneously T_C increases abruptly by 20% in 1.2 GPa. Similar pressure evolution of T_C was seen in Ref. [2]. For higher pressures up to 3.5 GPa, T_C increases linearly. The measured temperature dependence of magnetization reveals the ferromagnetic transition at ~ 50 K as well [2]; with increasing pressures, the transition becomes sharper and the absolute value of magnetization increases above ~ 0.6 GPa.

On the other hand, we have observed a significantly different pressure effect in CrI$_3$ compound, contradicting the results reported in [8]. Besides the dominant peak in the temperature dependence of the real part of AC susceptibility χ_{Re} corresponding to T_C, we observe another smaller peak at T^* ~ 50 K which shows identical pressure dependence. We observed only a very modest increase of T_C in low pressures up to 0.6 GPa which is not as significant as shown in Fig. 4 of Ref. [8]. The value of T_C does not change considerably in pressures up to ~ 1.5 GPa. At higher pressures, surprisingly, T_C starts to decrease. This linear decreasing tendency is observed up to the highest applied pressure of 3 GPa. The imaginary part of AC susceptibility vs. temperature $\chi_{Im}(T)$ shows peak only at T^* in all applied pressures. No frequency dependence was detected.

This different character of the pressure dependence of the AC susceptibility in the VI$_3$ and CrI$_3$ compounds is tentatively attributed to different evolution of dimensionality of ferromagnetic order, respectively.

Acknowledgments: This work is part of the research program GACR 19-16389J which is financed by the Czech Science Foundation. Experiments were performed in the Materials Growth and Measurement Laboratory MGML (see: http://mgml.eu). This work was supported by the Institute for Basic Science of the Republic of Korea (Grant No. IBS-R009-G1).

2. S. Son et al., PRR, 2019, 99, 041402(R).