
Short N…N and CH…N contacts in the ambient and high-pressure polymorphs of a high-nitrogen-content compound

Marcin Podsiadło¹*, Anna Olejniczak¹, Anna Katrusiak² and Andrzej Katrusiak¹

¹Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań, Poland ²Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland

Keywords: high pressure, phase transitions, explosives

*e-mail: marcinp@amu.edu.pl

The compression of high-nitrogen-content compound 6-azido-1,2,3,4-tetrazolo[1,5-*b*]pyridazine, (C₄H₂N₈), was studied *in situ* in a diamond-anvil cell by singlecrystal X-ray diffraction.[1] The compression of ambient-pressure phase α is monotonic to 2.5 GPa at least, and high-pressure isochoric recrystallizations yield phase α , too. A new polymorph β could also be recrystallized from the low-concentration acetone solution, at high pressure below 0.5 GPa and temperature lower than 320 K. However, above 0.5 GPa again only the ambient-pressure form α was obtained. Both polymorphs are built of the azide-tetrazole tautomer, and intermolecular CH···N and N···N interactions are similar, but the molecules aggregate into planar sheets in phase α and into a three-dimensional network in phase β . Polymorph β can be stored for a few years in an open vial in ambient conditions with no signs of changes.

Acknowledgments: This study was supported by the National Science Centre, Grant No. 2016/23/D/ST5/00283.

 A. Olejniczak, A. Katrusiak, M. Podsiadło, A. Katrusiak, Cryst. Growth Des. 2019, 19, 1832-1838.