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SiO2 is one of the most fundamental constituents in 
planetary science, being vastly abundant in the Earth’s 
crust and mantle. As an essential ‘building block’, it 
bonds with Mg, Fe and other elements to form major 
mineral phases and even free SiO2 can be expected in 
localized regions in the Earth’s mantle, derived from e.g. 
subducted oceanic crust [1]. The stability of SiO2 within 
these regions is affected by polymorphism at high 
pressures and SiO2 serves as an archetype for the dense 
highly coordinated silicates of planetary interiors and 
large (1-10M⊕) exoplanets [2]. Seismological 
heterogeneities in the ultralow velocity zones (ULVZs) at 
the upper end of the transition zone and at the core 
mantle boundary (CMB) have been interpreted with the 
presence of higher coordinated SiO2 melts [3,4]. The 
possible presence of silicate melts may result from partial 
melting of the lowermost mantle minerals or are 
remnants of the dense basal magma ocean [5], however, 
up to date it is only little known about these SiO2 melts 
within the field of geosciences.  
We carried out time-resolved X-ray diffraction studies of 
silicon dioxide (SiO2) at megabar pressures, using the 
long-pulse laser and shock diagnostics at the MEC end-
station of the Linac Coherent Light Source (LCLS), 
USA. Our study mainly focused on the in-situ 
investigation and determination of Si-O coordination and 
bond length in silicate melts, and consequently, its 
structure factors and radial distribution. Due to its recent 
upgrade, the ns-laser at MEC allowed us to compress 
SiO2 (fused silica and quartz) to pressures of up to 
140 GPa following its Hugoniot and reaching 
temperatures corresponding to the SiO2-liquidus regime. 
While simultaneously probing the samples with highly 
resolved X-ray diffraction at various time delays, it was 
possible obtain time-resolved information of the lattice 
structure during phase transitions, melting and re-
crystallization of SiO2. 
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