Type-I superconductivity in Ga-II phase of elemental Gallium

Rustem Khasanov*, Joel Verezhak, Hubertus Luetkens, Elvezio Morenzoni, and Alex Amato

¹Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland

Keywords: high pressure, superconductivity,

*e-mail: rustem.khasanov@psi.ch

The pressure induced superconductivity in Ga-II phase of elemental Gallium (the transition temperature $T_c \sim 6.45$ K) was studied experimentally by means of muon-spin rotation. Experiments reveal that Ga-II is the type-I superconductor with the zero temperature thermodynamic critical field $B_c(0)=64.07(1)$ mT. The analysis of $B_c(T)$ data within the phenomenological α -model, ref [1], allows to estimate $T_c=6.448(2)$ K, $\Delta=1.121(1)$ meV, and the coupling strengths $2\Delta/k_BT_c=4.024(2)$ (Δ is the zero-temperature value of the superconducting energy gap).

Correlation between the thermodynamical critical field B_c and the transition temperature T_c (see Fig.1) and between the coupling strengths $2\Delta / k_B T_c$ and $B_c / T_c \gamma$ (γ is the normal-state Sommerfeld specific heat coefficient) for various single metal superconductors and binary alloys were obtained. Both these correlations are well explained considering the phonon-mediated BCS type superconductivity and suggest, therefore, the similar type of the superconducting mechanism for Ga-II phase of elemental Gallium.

Figure 1. Correlation between the thermodynamical critical field B_c and the rnasition temperature T_c in single-element superconductors (after [2]). The various Ga phases are denoted by red starts.

Acknowledgments: This work was performed at the Swiss Muon Source (SµS), Paul Scherrer Institute (PSI, Switzerland).

- [1] H. Padamsee, J. Low Temp. Phys., 12, 387 (1973).
- [2] J.W. Rohlf, Modern physics from α to Z, Williey (1994).