Ferromagnetic to paramagnetic transition of SrRuO₃ under pressure
Anh Tong¹*, Pau Jorba¹, Marc Seifert¹, Stefan Kunkemöller², Kevin Jenni², Markus Braden², James S. Schilling¹, Christian Pfleiderer¹
¹Technical University of Munich, James-Franck-Str. 1, Germany
²University of Cologne, Zülpicher Str. 77, Germany

Keywords: high pressure, phase transition, ruddlesden-popper perovskite series.

*e-mail: anh.tong@frm2.tum.de

In the Ruddlesden-Popper perovskite series, Srₙ₊₁RuₙO₃ₙ₊₁, intense experimental and theoretical efforts have been dedicated to unravel the nature of unconventional superconductivity in single-layer Sr₂RuO₄ (n=1) as well as a putative electronic nematic phase masking the quantum critical end-point in the double-layer itinerant metamagnet Sr₃Ru₂O₇ (n=2). We report an experimental study of the zero temperature ferromagnetic to paramagnetic transition under pressures up to 20 GPa in high quality single crystals of the infinite layer itinerant ferromagnet SrRuO₃ (n=∞). Our study aims to reconcile the properties of Sr₃Ru₂O₇ and Sr₂RuO₄ with the generic temperature-pressure-magnetic field phase diagram of itinerant ferromagnets.