Dimerization of the honeycomb iridate α-Li$_2$IrO$_3$ under pressure

C. A. Kuntscher1, V. Hermann1, M. Altmeyer2, J. Ebad-Allah1,3, F. Freund4, A. Jesche4, A. A. Tsirlin4, M. Hanfland5, P. Gegenwart4, I. I. Mazin6, D. I. Khomskii7 and R. Valentí2

1Experimentalphysik II, Augsburg University, 86159 Augsburg, Germany
2Institut für Theoretische Physik, Goethe-Universität Frankfurt, 60438 Frankfurt am Main, Germany
3Department of Physics, Tanta University, 31527 Tanta, Egypt
4Experimentalphysik VI, Center for Electronic Correlations and Magnetism, Augsburg University, 86159 Augsburg, Germany
5European Synchrotron Radiation Facility (ESRF), Boîte Postale 220, 38043 Grenoble, France
6Code 6393, Naval Research Laboratory, Washington DC 20375, USA
7II. Physikalisches Institut, Universität zu Köln, 50937 Köln, Germany

Keywords: high pressure, x-ray diffraction, density functional theory, optical spectroscopy, structural phase transition

e-mail: Christine.Kuntscher@physik.uni-augsburg.de

The honeycomb iridates A_2IrO$_3$ (A=Li, Na) show novel behavior and phases arising from the competition between spin-orbit coupling, magnetization, and dimerization. In recent years, they have been intensively scrutinized as Kitaev physics candidates [1]. Here, we present the results of x-ray diffraction and optical spectroscopy measurements on α-Li$_2$IrO$_3$ and Na$_2$IrO$_3$ single crystals under pressure [2,3].

α-Li$_2$IrO$_3$ undergoes a pressure-induced structural phase transition with symmetry lowering from monoclinic to triclinic at a critical pressure of P_c=3.8 GPa, with the formation of Ir-Ir dimers (see Fig.1) [2]. These experimental observations are independently predicted and corroborated by ab initio density functional theory calculations. The pressure-induced Ir-Ir dimerization is a consequence of the subtle interplay between magnetism, electronic correlation, spin-orbit coupling, and covalent bonding. In comparison, in Na$_2$IrO$_3$ a structural phase transition analogous to the one observed in α-Li$_2$IrO$_3$ is predicted to occur at a much higher pressure, namely at about 45 GPa [2], consistent with pressure-dependent x-ray diffraction measurements on Na$_2$IrO$_3$ single crystals [4].

The pressure-induced Ir-Ir dimerization in α-Li$_2$IrO$_3$ is furthermore revealed in the electrodynamic properties in the frequency range of the phonon modes and Ir d-d transitions, as observed by reflection and transmission measurements under pressure [3]. Further major pressure-induced changes on the Ir d-d transitions are found for pressures well above P_c.

Figure 1. (a) Pressure dependence of the Ir-Ir distances for the Ir hexagons in the ab plane, with the nomenclature (Ir bonds X_1, Y_1, Z_1) given in (b) for the ambient-pressure monoclinic crystal structure. Ir-Ir bond lengths as predicted from our calculations are shown as open symbols connected by a line. The two equivalent ordering patterns of the Ir-Ir dimers above P_c are illustrated in (c) and (d).

Acknowledgments: We thank the ESRF, Grenoble, France, for the provision of beamtime. This work was financially supported by the Federal Ministry of Education and Research (BMBF), Germany, through Grant No. 05K13WA1 (Verbundprojekt 05K2013, Teilprojekt 1, PT-DESY). D.I.Kh. is grateful to D.
Haskell for useful discussions. R.V. acknowledges fruitful discussions with Y. Singh. M.A., D.I.Kh., R.V., and P.G. acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG), Germany, through TRR 80, SPP 1666, TRR 49, and SFB 1238. A.J. acknowledges support from the DFG through Grant No. JE 748/1. A.A.T. acknowledges financial support from the Federal Ministry for Education and Research via the Sofja-Kovalevskaya Award of Alexander von Humboldt Foundation, Germany. I.I.M. was supported by A. von Humboldt Foundation and by ONR through the NRL basic research program.