Phase transition kinetics and titanium compressibility

A.V. Sedov, A.E. Shestakov

Russian Federal Nuclear Center - Zababakhin All-Russia Research Institute of Technical Physics

(RFNC-VNIITF), Snezhinsk, Russia

Keywords: high pressure, X-ray diffraction measurements, Rietveld method, two-phase condition, kinetics

*e-mail: <u>a-sedov86@mail.ru</u>

X-ray diffraction measurements are taken on the sample of commercially pure titanium under static loading and room temperature. A single crystal X-ray diffractometer with the Imaging Plate two-axis detector was used for measurements in the Mo-K α radiation. Static loading was created using the membrane-type high-pressure cell with anvils having 500 μ m in diameter. Sodium chloride (NaCl) served as the pressure propagation medium and the diffraction standard. The gasket was made of inconel metal.

Pressure attained in experiments was 8.3 ± 0.3 GPa (83 kbar). Data on changes in structural characteritics of the titanium α -phase under pressure were obtained, i.e. parameters of the crystalline lattice and the elementary cell volume.

Initial stage kinetics for the $\alpha \rightarrow \omega$ transition was recorded in the course of 66-hour exposure to 8 GPa constant pressure (Fig.1).

After this exposure, the sample was found to be in the two-phase state. Under cell release, the reverse $\omega \rightarrow \alpha$ transition was not observed to take place. The Rietveld method helped to update experimental data in the FullProf code. Parameters of the α -, and ω – phases were determined at 8 GPa and in the final two-phase state at standard pressure.

Figure1.Intensity of largest peaks of α -, and ω - phases in titanium. Exposure to 8 GPa constant pressure.

Volume per one atom at standard pressure was 17.7 (α) and 17.4 (ω) Å³/at with the 1.7 % defference there between. After release, weight content of phases at standard pressure was determined to be α - 71% and ω - 29%.